	_	投資資産としての暗号資産の捉え方~拡大する投資家層と新たな法規制、期待されるブロックチェーン技術活用とその影響、
掲載		そして課題について
	第1章	暗号資産を取り巻く環境について
	第2章	自主規制によるルールと運用状況について
	第3章	多様なブロックチェーン技術への期待とその課題
	第4章	投資資産としての可能性と留意点

ブロックの合意アルゴリズム比較

	PoW	PoS
代表例	ビットコイン	イーサリアム
合意形成	大量の計算競争	トークン保有量に 基づく
年間消費電力	約1,200億kWh	約600万kWh
取引1件の消 費電力	794kWh	0.015kWh (VISAの15倍)
環境負荷	極めて高い	PoWより低い
処理速度	遅い	PoWより速い

※数字は「ブロックチェーンと生成AIにおける電力消費の現状」日本総研2024年12月より作成

ブロックチェーン技術のメリット

真正性・非改ざん性 可用性・耐障害性 透明性・追跡可能性

ブロックチェーン技術のボトルネック

スケーラビリティ 問題

規模が大きくなれば時間やコスト増

合意アルゴリズム選択

電力消費に関する対策が必要

異なるブロックチェーン 間の相互運用性 トークン相互に利用可能な技術が期待されるが、現状は困難

運用面の課題

秘密鍵管理の負担と資産流出リスク

一度記録したデータの変 更・削除の困難さ 利用者のリテラシー不足 と教育の必要性